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A common problem in fair division is when we divide a set of indivisible items fairly among some number

of agents. There are many offline algorithms that solve this problem. In this paper, we consider when one

item arrives every step, but we need to maintain a fair allocation at each step. We consider several different

settings where our algorithm is allowed to change the past, know the future, or maintain a cache of fractional

items. We present several algorithms that achieve different fairness propoerties under these settings.

1 INTRODUCTION

1.1 Background

We first consider some underlying assumptions that apply to all the settings we consider. As

mentioned, we are trying to allocate indivisible goods. We suppose that we have a set of n agents

and and items arriving. We will refer to the ith item to arrive as Ii . In addition, each agent i has a

value of vit for item t . We assume that agents’ utilities are additive. Formally, for any set of items S ,

the value to agent i , Vi (S) is defined as Vi (S) =
∑

t ∈S vit . Finally, we can define an allocation as a

partition of the items into sets A1, · · · ,An , where we given the items in Ai to agent i .

Two common measures of fairness that we care about are proportionality and envy-freeness. An

allocation is envy-free if no agent envies another agent’s allocation. Formally, we have Vi (Ai ) ≥

Vi (Aj ) for any two agents i, j ∈ [n]. An allocation is proportional if each agent values their own

allocation at least
1

n of their value for all items. So if S is the set of all items, we must have

Vi (Ai ) ≥
1

nV (S) for all i ∈ [n]. Both of these fairness measures are impossible to achieve in the

indivisible goods setting. To see why, just consider allocating one indivisible item among 2 agents.

Thus, recent work has instead focused on the discrete version of envy-freeness called envy-freeness
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up to one good (EF1), used in a paper by Lipton et al. [5]. Specifically, for any pair i, j ∈ [n], there

exists an I ∈ Aj such that Vi (Ai ) ≥ Vi (Aj \ I )

In the offline setting, there always exists an EF1 allocation. Many different offline algorithms

have been given for finding an EF1 allocation. We now consider the online setting, where one item

arrives each step and the algorithm must immediately allocated this item. Thus, an EF1 allocation

algorithm in the online setting must allocate items such that at each step, the allocation is EF1.

Other fairness measures can be defined similarly for online algorithms. A recent paper by Benade

et al. [2] shows that impossibility of an online EF1 allocation algorithm. In fact, envy is guaranteed

to grow by Õ(
√
T /n) as T goes to infinity.

Thus, we consider when the algorithm is given several different abilities. The first, which can

be though of as changing the past, is when the algorithm is allowed to disrupt up to d items at

each step. At each step, in addition to allocating the new item that arrived, the algorithm can also

move up to d items that were previously allotted between agents. A second setting, which can

be thought of as knowing the future, is when only a fixed number of items will arrive, T , and the

algorithm is informed of the values of each item to each agent ahead of time. However, the items

still arrive one per step and the allocation at each step must be fair. Finally, we also consider a

third setting, fair division with a cache. In this case, the algorithm is allowed to allocate d items

fractionally at any step. These fractionally divided items may be reallocated at later steps but all

other items are permanently allocated. In the case of of fractional items, let xit be the amount of

item t assigned to agent i . We require that

∑
i ∈[n] xit = 1 for all t . Then we can redefineVi (Aj ) to be

Vi (Aj ) =
∑

k ∈[t ] x jkvik . So the value of a fractional item to an agent is proportional to the fraction

the agent got.

So at each time step an item It arrives. Let A
t
i be the allocation to agent i at time t . For the

knowing the future setting, we also refer to As,t
i , which is the allocation to agent i at time t , but

only considering items that arrived at or after step s . We can define the envy between i, j at time t

as:

ENVYti, j = Vi (A
t
j ) −Vi (A

t
i )
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Similarly, we might also be interested in:

ENVYs,ti, j = Vi (A
s,t
j ) −Vi (A

s,t
i )

Finally, we care about the overall ENVY at any time t which is:

ENVYt = max

i, j
ENVYti, j

1.2 Main Results

We obtain the following results for each of the above settings:

For the disruptions setting, we find that when there are just 2 agents, we can achieve EF1 at each

step using just 1 disruptions per step. We describe such an algorithm in Theorem 2.3.

For the cache setting, we provide an algorithm that uses just n − 1 fractional cache items in

Theorem 2.2.

Finally, in the prefix fairness setting, we find an algorithm that for 2 agents, achieves prefix EF1

fairness. We describe the algorithm in Section 3.

1.3 Related Work

Benade et al. study the purely online setting in [2]. Aleksandrov et al. study online fair division

when agent utilities are in {0, 1} [1]. They discuss applications to distributing goods for a food

bank.

Fair division of indivisible items has been studied by Lipton et al. in [5]. Online algorithms with

disruptions has been studied before in the context of job scheduling by Sanders et al. [6] and in the

context of bin packing by Gupta et al.[4].

2 FRACTIONAL ITEM ELIMINATION

In this section, we introduce an algorithm used for both the cache setting and the disruptions

setting. To motivate the algorithm, we first consider what happens when the items are divisible.

Then, we can easily obtain an equitable division, or a an allocation where every agent values every
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allocation equally, just by giving each agent
1

n of each item. However, this requires that every single

item is given out fractionally. The hope wold be that equitability can be achieved with fewer items.

It turns out that there always exists an allocation with at most n2 fractional items that is equitable.

A similar question to ask is how many fractional items are needed to achieve a proportional allocate.

Theorem 2.1 shows that n − 1 items are sufficient. Its also easy to see that n − 1 items are necessary,

by considering a situation with n − 1 identical items.

Theorem 2.1. For any proportional allocation A, there exists a proportional allocation A′ which

allocates at most n − 1 items fractionally and any integrally allocated items in A are allocated the

same way in A′.

Proof. Consider the bipartite graph G induced by A, where edges are between two sets P , I

where the set P represents the agents and the set I represents the items. Let there be an edge

between (p, i) when 0 < xpi . We claim that we can find a new allocation A′
such that G ′

has no

cycles and each agent’s value for their own items does not decrease.

Suppose G has a cycle of size 2n. Since the graph is bipartite, it contains n agents and n items.

Note that integrally allocated items cannot be part of the cycle. Let the agents be α1, · · ·αn and

items be I1, · · · , In . For simplicity of notation, let vi j be how much agent αi values item Ij . If we

index the agents and items appropriately, we have that each agent αi is connected to two items

Ii , Ii+1 by the cycle. Similarly, each item Ii is connected to agents αi ,αi−1.

Now suppose that for each item Ii , we were to move δi (possibly negative), of the item from αi

to αi−1. Consider the vector ∆, where ∆i is the change in each agents’ value for their own items.

We can express ∆ using the following linear equation:



−v1,1 v1,2 0 0 · · · 0

0 −v2,2 v2,3 0 · · · 0

...
...

vn,1 0 0 0 · · · −vn,n


·



δ1

δ2
...

δn


=



∆1

∆2

...

∆n


LetV be the value matrix define above. We case on whetherV is invertible. Suppose it is invertible.

Then there exists a vector
®δ such that V · ®δ = ®∆, where ®∆′ = (ε, ε, · · · ε) for any choice of ε . If we

choose ε > 0 small enough, we will have that
®δ is a list of item transfers that is implementable
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(after the transfer, no agent will have negative of any item) but ensures that there is at least one xi j

that is now equal to 0. However, after implementing the transfers
®δ , we have just increased each

agents value for their own items and reduced number of edges by at least one.

Now, if V is not invertible, then there exists a non-zero vector
®δ such that V · ®δ = ®0. Since for

any constant c , V · c ®δ = ®0 we can just choose c small enough that
®δ is implementable but ensures

that there is at least one xi j that is now equal to 0. This reduces the number of edges by at least

one and agents’ values for their own items has not changed.

We repeat the above until no cycles exist, which is guaranteed to happen because the number of

edges is strictly decreasing each step. The final allocation must be proportional.

Any graph with no cycles has at most |V | − 1 edges. So if there are n agents andm items, there

are at most n +m − 1 edges. Since each item must have an edge to at least one agent, this implies

that the number of fractional items is at most n − 1.

The idea here is similar to the proof of Lemma 1 from [3]. □

2.1 Algorithm

Theorem 2.2. In the cache setting, n − 1 fractional items are sufficient to guarantee proportionality.

Proof. We can use Theorem 2.1 to create an algorithm that guarantees a proportional allocation

for n agents with only n − 1 fractional items in cache. Whenever a new item arrives, we initially

assign it fractionally, giving
1

n of the item to each of the n agents. We then perform cycle elimination

until we have at most n − 1 fractional items. It is possible that we will go below n − 1 fractional

items but that is not an issue.

We can use induction to show the allocation at each step is proportional. □

Theorem 2.3. In the disruptions setting, when n = 2, 1 disruption per step is sufficient to guarantee

an EF1 allocation at every step.

Proof. Again, we use Theorem 2.1. Note that when n = 2, Theorem 2.1 tells us that with just 1

fractional item in cache, we can guarantee a proportional allocation. Thus, our algorithm will just

round the item in cache at each step to the agent with the larger portion of the item.
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We first show that the algorithm maintains an EF1 allocation. From 2.1, we know that at any

step, the fractional allocation (S1, S2) satisfiesV1(S1) ≥ V1(S2) andV2(S2) ≥ V2(S1). Let Ij be the item

in the cache.

First, suppose agent 1 is assigned the cache item. Then at the end of the step, agent 1 is temporarily

assigned the cache item. Agent 1 is clearly not envious because he is unenvious in the fractional

division scenario is now doing even better. For agent 2, consider the allocation without the cache

item, (S1 \ Ij , S2 \ Ij ). Because agent 1 got the item, we know that in the fractional allocation, agent 1

received at least half of it. So we can sayV2(S2 \ Ij ) ≥ V2(S2) − 0.5v2j ≥ V2(S1) − 0.5v2j ≥ V2(S1 \ Ij ).

So if agent 2 removes the cache item from agent 1’s allocation, he is no longer envious. The case

where agent 2 is temporarily assigned the item is similar.

Finally, note that at any step, the only item that might need to be reallocated is the item in

the cache at the start of the step. Since there is only one item in cache, only one disruption is

needed. □

Since we know that with 0 disruptions per step, EF1 is not achievable, we know that the above

algorithm is optimal by only using at most 1 disruption per step.. However, one might ask if the

problem becomes easier if disruptions are amortized. For example, while in the above setting, we

are allowed 1 disruption per step, we might not always use the disruption. However, it seems

possible that when we instead simply given C “flexible" disruptions to use over T steps, we might

be able to use significantly less disruptions thanT . However, we can also show that for n = 2, Ω(T )

flexible disruptions are required to maintain EF1.

Theorem 2.4. There exists an adversary strategy such that any EF1 allocation algorithm must use

at least ⌊T
6
⌋ disruptions over T steps.

Proof. The adversary strategy is built around a repeated 6-step sequence. Sequence sj will

describe the values for items 6j+1 to 6j+6. For t = 6j+1, 6j+3, 6j+5, we will havev1,t = v2,t = 14
j
.

For steps t = 6j + 2, 6j + 4, 6j + 6, the values of the item will depend on the assignment of item t − 1.

Specifically, if agent i received item t − 1, then the adversary will set vi,t = 14
j
and set the value

of the item for the other agent to
1

4
14

j
.
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To show the lower bound, we just need to prove that any EF1 allocation algorithm must use one

disruption for each 6-step sequence. Assume for sake of contradiction that for some sequence sj ,

no disruptions are used during that sequence.

One important observation is that if the largest item value is v , in any EF1 allocation, all agents

must have envy at most v .

Using this observation, we can show that if no disruptions are used for items 6j + 1 to 6j + 6,

then for each item pair (6j + 1, 6j + 2), (6j + 3, 6j + 4), (6j + 5, 6j + 6) each agent must receive

exactly one item from each pair. Let S6j = ENVY1,2
6j + ENVY

2,1
6j (also remember that we are allowing

ENVY to be negative here). We can give the following lower bound S6j ≥ −
∑

6j
t=1 |v1t − v2t | =

−3
∑j−1

i=1
3

4
14

i > − 9

52
14

j
. Since the allocation at step 6j is EF1 and the largest item value at that

step is 14
j−1

, this implies that ENVY1,2
6j , ENVY

2,1
6j ≤ 14

j−1
. Putting the two together, we have that

ENVY1,2
6j , ENVY

2,1
6j > − 9

52
14

j − 14
j−1 = − 89

364
14

j > − 1

4
14

j
. Thus, if item 6j + 1 is given to agent i ,

item 6j + 2 cannot also be given to agent i or else the allocation would not be EF1 since the other

agent would have envy greater than 14
j
. To show this also holds for the remaining item pairs, note

that after the arrival of any item pair, the envy of each agent can only increase.

Finally, we know that at least one agent received at least 2 of the items 6j + 2, 6j + 4, 6j + 6. Wlog,

suppose it was agent 1. Then we have ENVY1,2
6j+6 ≥ ENVY1,2

6j + 2 · (14
j − 1

4
14

j ) > 14
j
, we means this

allocation is not EF1.

Below, we give an example of a sequence assuming no disruptions. The lower bounds are

non-inclusive and the brackets denote who the item was given to.

t 6j 6j + 1 6j + 2 6j + 3 6j + 4 6j + 5 6j + 6

Value of Agent 1 · · · [14j ] 14
j

14
j [ 1

4
14

j ] [14j ] 14
j

Value of Agent 2 · · · 14
j [ 1

4
14

j ] [14j ] 14
j

14
j [ 1

4
14

j ]

Lower bound for ENVY1,2
t − 1

4
14

j − 5

4
14

j − 1

4
14

j 3

4
14

j 1

2
14

j − 1

2
14

j 1

2
14

j

Lower bound for ENVY2,1
t − 1

4
14

j 3

4
14

j 1

2
14

j − 1

2
14

j 1

2
14

j 3

2
14

j 5

4
14

j

□
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3 ENVY CYCLE ELIMINATION

We now turn to the setting where the algorithm the stetting where we must allocate items step by

step but know the future (prefix fairness). Lipton et al. introduce envy cycle elimination as a EF1

allocation algorithm in the offline setting [5]. We can adapt that algorithm into one that works well

in the prefix fairness setting.

Algorithm. Supposewe are givenT items to allocate among 2 agents. Our algorithmwill simulate a

modified envy cycle elimination protocol to produce an final allocationA for allT items. Specifically,

at each step, we will assign the new item to an arbitrary unenvied agent. Next, we will keep track

of the last time s in which the allocation was envy-free. If at step t there is ever an envy cycle when

considering at items assigned after time s , we will swap all items from s + 1 to t along the cycle.

For example, if agent 1 envies agent 2 and vice versa, we will give all items agent 1 recieved during

step s + 1 to t to agent 2 and vice versa.

We apply our above algorithm to the case when n = 2.

Lemma 3.1. For any t ≤ T , let s be the last step before t in which allocation A was envy-free.

Let M1 = max{v1j : j ∈ [s + 1, t] and agent 2 owns Ij in A}. Let M2 be defined similarly. Then

ENVYs+1,t
1,2 ≤ M1, ENVY

s+1,t
2,1 ≤ M2. In other words, this section of the allocation is EF1.

Proof. We will show ENVYs+1,t
1,2 ≤ M1. The proof for ENVY

s+1,t
2,1 ≤ M2 is similar.

Let A′
be the allocation where each item is given to the agent it was first assigned to (before any

envy cycle elimination). Let A[x ,y] refer to the allocation of items x to y. Since we swap all items

that arrived after the last envy-free step, there are two possibilities for the final allocation of items

s + 1 to t in A: either A[s + 1, t] = A′[s + 1, t] or A[s + 1, t] is the opposite of A′[s + 1, t]. Note that

the first case occurs when the allocation becomes envy-free without the need for a swap and the

latter occurs when the allocation becomes envy-free because of a swap.

For the following, let any ENVY values refer the envy underA′
. So we want to show ENVYs+1,t

1,2 ≤

M1 if no swap occurred and ENVYs+1,t
1,2 ≥ −M1 if there was a swap.

Suppose no swap occurred. Now assume for sake of contradiction that ENVYs+1,t
1,2 > M1 and

consider the first t ′ for which ENVYs+1,t
′

1,2 > M1. Then at t ′, we must have given agent 2 an item.
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However, the value of this item to agent 1 is bounded byM1, so before this step, agent 1 must have

envied agent 2. But then we just gave an item to an envied agent, which contradicts the algorithm.

Now suppose a swap did occur. We want to show show ENVYs+1,t
1,2 ≥ −M1. Assume for sake

of contradiction ENVYs+1,t
1,2 < −M1 and let t ′ be the first step where ENVYs+1,t

′

1,2 < −M1. Then we

know that at step t ′, we assigned the new item to agent 1. Since a swap occurred,M1 is actually

the maximum value agent 1 has for their own items. Together, this implies agent 1 was not envious

right before step t ′. Since our algorithm gave the new item to agent 1, agent 2 also was not envious

right before step t ′. Therefore, the allocation of items from s + 1 to t ′ − 1 is envy-free. Hence,

the allocation of items from 1 to t ′ − 1 is also envy-free. But since s is the last step before t in

which A was envy free, we should then have s = t ′ − 1. This is a contradiction since we know

s + 1 ≤ t ′ − 1. □

Theorem 3.2. The above algorithm generates an allocation A that is prefix EF1.

Proof. Using the definition of s from Lemma 3.1, for any t , we decompose ENVYt
1,2 = ENVYs

1,2+

ENVYs+1,t
1,2 and similarly for ENVYt

2,1. By definition of s , ENVYs
1,2 ≤ 0 and ENVYs+1,t

1,2 ≤ M1 so

ENVYt
1,2 ≤ M1. Since M1 is the value of some item assigned to agent 2, agent 1 is not envious of

agent 2 after removing this item. Therefore, allocation is prefix EF1. □

4 DISCUSSION

The above results either achieve proportionality with n agents, or EF1 with just 2 agents. An

important area where there are still few results is when there are more than 2 agents but the goal

is to achieve envy-freeness. For example, in the disruptions setting, there are known allocation

algorithms that achieve envy-freeness up to value O(n
√
logn) (assuming item values are between

0 and 1) that use n2 disruptions per step. However, there still do not exist any non-trivial lower

bounds, so this area seems like a likely area of improvement.
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